Search documentation

Search for pages in the documentation

AI Capabilities

Overview of AI features in Agents

Agents provides powerful AI capabilities that enable intelligent automation. This section covers how to leverage AI effectively in your workflows.

AI in Workflows

AI transforms static automation into intelligent workflows that can:

  • Analyze meeting transcripts and documents
  • Summarize conversations and key points
  • Extract action items, decisions, and insights
  • Generate personalized content and messages
  • Classify information and route accordingly
  • Decide next steps based on context

AI Node Types

AI Prompt

For structured AI processing with defined outputs:

text
[AI Prompt]
├── Input: Messages array with context
├── Output: Structured data (string, integer, boolean, etc.)
└── Use for: Summarization, extraction, classification

Best for:

  • Generating summaries
  • Extracting specific information
  • Classification tasks
  • Simple transformations

AI Agent

For complex tasks requiring multi-step reasoning:

text
[AI Agent]
├── Input: Messages array with instructions
├── Tools: List, Search, Open, Web Search
├── Output: Structured data with reasoning
└── Use for: Research, analysis, complex decisions

Best for:

  • Research tasks
  • Complex analysis
  • Tasks requiring external information
  • Multi-step reasoning

Model Tiers

Choose the right tier based on task complexity:

TierUse CaseSpeedCost
LowSimple classification, yes/noFastestLowest
MediumStandard analysis, summarizationBalancedModerate
HighComplex reasoning, sophisticated analysisSlowerHigher

Model Capabilities

Low Tier (Economy Processing)

  • Quick classification
  • Simple extraction
  • Binary decisions
  • High throughput tasks

Medium Tier (Analytical Reasoning)

  • Meeting summarization
  • Action item extraction
  • Content generation
  • Sentiment analysis

High Tier (Complex Reasoning)

  • Sophisticated analysis
  • Multi-factor decisions
  • Nuanced interpretation
  • Complex problem solving

Structured Outputs

AI nodes return typed, predictable outputs:

Return TypeDescriptionExample Use
stringText responseSummaries, messages
integerWhole numberScores, counts
booleanTrue/falseClassifications
floatDecimal numberConfidence scores
string_listArray of stringsAction items, tags
integer_listArray of numbersRankings, IDs

Prompt Structure

AI nodes use a messages array with roles:

text
[
  { role: "system", content: "Instructions for the AI" },
  { role: "user", content: "Context and data to process" }
]

Message Roles

RolePurpose
systemSet AI behavior and instructions
userProvide context and data
assistant(Optional) Few-shot examples

Expression Languages

AI nodes use Liquid templates for dynamic content:

liquid
System: You are a meeting analyst.

User: Summarize this meeting.
Meeting: {{ json.meeting.title }}
Attendees: {{ json.meeting.attendees | map: "name" | join: ", " }}
Transcript: {{ json.callRecording.transcriptSummary }}

AI Workflow Patterns

Pattern: Analyze Then Act

text
[Load Data] → [AI: Analyze] → [If: condition] → [Action]

Pattern: Generate Content

text
[Load Data] → [AI: Generate message] → [Send message]

Pattern: Extract and Process

text
[Load Data] → [AI: Extract items] → [Select Many] → [Process each]

Pattern: Classify and Route

text
[Load Data] → [AI: Classify] → [If: urgent?]
                               ├─ Yes ─→ [Urgent path]
                               └─ No ──→ [Normal path]

Best Practices Summary

PracticeImpact
Choose appropriate model tierPerformance + Cost
Use transcriptSummary vs full transcriptSpeed + Cost
Provide clear, specific instructionsOutput quality
Use structured outputsReliability
Test with diverse dataRobustness

In This Section